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NOMENCLATURE

Green’s function
Advective term in Navier-Stokes equations, m/sec?
One-dimensional wavenumber, 1/m

Planar wavenumber magnitude = (/k2 + k2, 1/m
Planar wavenumber vector, 1/m

Number of points in a sampling period

Dynamic pressure, kg/(m - sec?)

Computed pressure, kg/(m - sec?)

Region number

Reynolds number based on u,,d

Reynolds number based on U, §

Reynolds number based on ., 6*

Time, sec

Pressure source term 35, sec™2

Velocity vector, m/sec

Streamwise, wall-normal, and spanwise velocities, respectively, m/sec
Friction velocity, m/sec

Laminar centerline velocity, m/sec

For TCF the turbulent centerline velocity, for TBL, the outer flow velocity,
m/sec

Time- and space-averaged streamwise velocity normalized by u,

Friction velocity, = /7,/p

Streamwise, wall-normal and spanwise coordinates, respectively, m
Wall-normal distance in wall units, = yu./v

Angle, radians

Channel half-width, m
Momentum thickness, m
Divergence operator, m™!

Kinematic viscosity, m?2/sec

Radian frequency, 1/sec

Two-dimensional pressure spectra

Partial pressure due to term 4j and region r, kg/(m - sec?)
Three-dimensional pressure spectra

Density, kg/m?

Wall shear stress, kg/(m - sec?)

Radian frequency at which 1/2 of the convective ridge is resolved, rads
Radian frequency normalized by viscous units = wé* /u,




ABBREVIATIONS

CFL Courant-Friedrichs-Lewy
CM Choi and Moin

DNS Direct numerical simulation
FT Fourier transform

IFT Inverse Fourier transform
LES Large eddy simulation
MHz megaHertz

m.s. Mean-square

MS Mean-shear

N-S Navier-Stokes

RANS Reynolds-averaged Navier-Stokes
SGI Silicon Graphics

SGS Sub-grid scale

TBL Turbulent boundary layer
TCF Turbulent channel flow

TT Turbulence-turbulence
WPF Wall pressure fluctuation

COVER ILLUSTRATION

Pseudo-color image of wall pressure due to mean-shear (MS) pressure from sources
in the entire channel. Red indicates regions of positive pressure, blue, negative pressure.
Image was extracted from animations of wall pressure generated for MS and turbulence-
turbulence (TT) sources from individual regions of the channel. Pressures generated
from the channel flow simulations are documented in this report.
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ABSTRACT

This report documents, for the first time, the wavenumber and frequency
characteristics of the mean-shear (MS) and turbulence-turbulence (TT) par-
tial wall pressures. Results show that both the TT and MS pressures are
important for the convective pressures, but that the TT pressure dominates
in the subconvective wavenumber range. At low frequencies both the buffer
layer and logarithmic region contribute significantly to the MS convective
pressure; at higher frequencies the buffer layer is dominant. The partial
pressures were obtained from two large eddy simulations (LES) of a fully-
developed turbulent channel flow; they were computed from the TT and
MS source terms from four regions of the channel (viscous shear layer,buffer
layer, logarithmic region and upper channel). The Reynolds number for the
simulations was, Res» = u.0*/v = 24 (Re, = 171); the non-linear terms
in the simulation, as well as those pressure source terms were dealiased us-
ing the 2/3 rule. The first simulation, LESS, used the rotational form of
the nonlinear terms, whereas the second simulation, LES9, used the skew-
symmetric form. Significant differences between the two simulations appear
only in the subconvective wavenumber range for the TT spectra that has
been integrated over the entire channel, pointing to the fact that the skew-
symmetric form, while more expensive, computationally, is more accurate.

EXECUTIVE SUMMARY

This work is part of an effort to develop a hybrid RANS/Analytical/Statistical nu-
merical tool for the prediction of low Mach number, hydrodynamically-generated sound
in the absence of cavitation. This tool is based on a mathematical formulation for the
mean-shear (MS) component of the pressure in which RANS simulations provide the
mean flow variables, while models based on turbulence simulations provide the neces-
sary information regarding the fluctuating sources and their wall-normal correlations.
Using turbulence simulations, all the elements of modeling can be tested since the ex-
act three-dimensional source terms and their resultant wall pressures can be obtained.
In the work reported herein we characterize the wall-pressure fluctuations due to the
MS and TT pressures in both the convective and subconvective wavenumber-frequency
ranges. This work is novel in three respects: (1) it characterizes the wavenumber-
frequency characteristics of the individual MS and TT pressures, (2) it characterizes
these pressures in the subconvective wavenumber-frequency range and (3) the MS and
TT pressures have been decomposed into their components from four layers parallel to
the wall. Thus, this work provides a first glimpse into the nature of the MS and TT
pressures in a form appropriate for hydroacoustic modeling and it provides a database
which can be used for validating models of the MS (and TT) pressures; in addition
it shows the relationships between the the MS and TT velocity-field sources and their
pressures in wavenumber-frequency space — this will help with physics-based mod-
eling. The wall-pressure and velocity field databases were obtained from LES of a
fully-developed, turbulent channel flow with Reg = u,6*/v =~ 24 (Re, = 171).
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INTRODUCTION

The US Navy is interested in turbulent wall pressure fluctuations (WPF) because
they are an important source of energy for flow-induced noise. The low-wavenumber,
high-frequency (with respect to the convective ridge) components (or subconvective)
of WPF's provide the forcing function for the structures underlying the flow. The con-
vective components provide the forcing function for flow-induced noise from trailing
edge flows. The nature of the subconvective pressure has been difficult to determine,
due to its low energy (with respect to the convective ridge), whereas the nature of the
pressure at the convective ridge has been easier to determine due to its higher energy
levels. Nonetheless, for modelling purposes, enough information from experiments has
been hard to come by due to lack of three-dimensional data with which to characterize
the velocity field wall pressure sources. Chang, Piomelli and Blake!, using a velocity
field database from a low-Re turbulent channel flow (TCF) decomposed the WPF's into
their mean-shear (MS) and turbulence-turbulence (TT) components (partial pressures)
and further, due to four regions of the channel (viscous shear layer, buffer layer, log-
arithmic region and upper channel). They showed in one-dimensional streamwise and
spanwise wavenumber space which terms and regions are responsible for the dominant
partial pressures. However, the one-dimensional spectra show essentially the character
of the peak of the convective ridge, disguising the nature of the partial pressures away
from the convective ridge, particularly in the subconvective wavenumber range. Chang,
Piomelli and Blake' showed that the spectra of the individual TT pressures, II;;(Rr)
(where Rr denotes one of the four regions of the channel) have two or more order of
magnitude greater energy in the lowest wavenumber modes than the TT pressure due
to all terms and regions. There is speculation that this high energy is due to low-
wavenumber cross-channel coherence. Studying the k, —w characteristics of the partial
pressures may shed some more light on the nature of the low-wavenumber behavior.

~ In Chang? modelling the convective ridge pressure was addressed through the eval-
uation of a model for the MS pressure. A complete k; —w spectrum of the MS pressure
is necessary to guide model development, provide data for statistical functions and
provide data for validation.

The objective of this work was to study the wavenumber-frequency characteristics
of the partial pressures, particularly to assess the subconvective behavior and to study
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computational issues that affect it. Two long time-series of partial pressures was ob-
tained from a LES of a TCF simulation. From this database, the wavenumber-frequency
spectra of the partial pressures was computed and evaluated. '

MATHEMATICAL FORMULATION

In this section we show the various forms for the nonlinear terms and suggest how
they might impact computation of the wall pressure. The convection form, as derived
from integral calculus, is given by

h=u-Vu, (1)
the divergence form of h is given by

h=V-:(uu), (2)
the rotational form is given by

h=uxw+ sV (uu) 3)
and the skew-symmetric form is given by

h=%[u-(Vu)+V-(uu)]. @)

The form of the nonlinear terms, h, in the Navier-Stokes equations may be impor-
tant for the computation of the wall pressure directly and indirectly. The form of the
ponlinear terms in the Poisson equation may have a direct affect on the wall pressure.
The TT source terms are nonlinear velocity products derived directly from h. The
product of two sinusoidal signals are themselves signals that have wavenumbers which
are the sum and difference of the two signal’s respective wavenumbers. e.g.,

sinacos f = % cos(a — ) — % cos(a + f). (5)
The nonlinear interactions result in the transfer of energy primarily into modes at the
convective ridge. Energy is transferred to other parts of the spectrum, including the
subconvective wavenumber range. The subconvective wavenumber range has energy
levels that are at least 20 dB down from the convective ridge so it is conceivable that
small changes in how h are computed can affect the subconvective wavenumber range
characteristics. For simplicity the divergence form has always been used for computing
the nonlinear source terms.

The pressure is affected indirectly, in the computation of the velocity fields them-
selves in the N-S equations. When discretized, the convection form does not conserve
linear momentum or kinetic energy; the divergence form conserves only linear momen-
tum. This leads to numerical instabilities in turbulence simulations. However, it has
been shown (see Zang®) that switching between the convective and divergence forms
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(the “alternating” form) results in a well-behaved simulation. On the other hand, the
rotation and skew-symmetric forms conserve both linear momentum and kinetic en-
ergy. It can be seen that the skew-symmetric form is the average of the divergence
and convection forms, and thus closely related to the alternating form. The rotation
form only requires the computation of six derivatives while the skew-symmetric form
requires 18; the alternating form would take six and 12 derivative computations on
alternating time steps. For efficiency reasons, the rotation form is the most popu-
lar, used for instance in Kim et al.,? and Choi and Moin®. Zang® showed that for a
fully-developed turbulent channel flow the form of the nonlinear terms made differ-
ences in the high-wavenumber tail of the velocity spectra but did not affect the lower
wavenumbers. However, in a simulation of homogenous turbulence it was shown that
the rotation form significantly underpredicts the turbulence kinetic energy and velocity
spectra. Also compared were the integral scales, microscales, skewness and flatness; it
was found that the skew-symmetric and alternating forms had results much closer to
the Galerkin method* results than did the rotational results.

When the rotational form is used the resolved kinetic energy term is incorporated
into the pressure term such that the computed pressure is P = p + %u - u, where p is
the dynamic pressure. Furthermore, the dynamic subgrid-scale model only computes
the anisotropic part of the SGS stresses and the isotropic part is assumed to be added
to the pressure term. For the present work the wall pressure is computed directly from
the velocity fields. The nonlinear terms were evaluated with the rotational form for
LES8 and the skew-symmetric form for LES9.

In both cases, the nonlinear terms were dealiased in the z and z directions using
the 2/3 rule. In this method, the time advancement is performed on a “3/2-grid” in
the z and z directions; the velocity fields are then converted to Fourier space where
the top 1/3 modes in each direction are truncated, removing the aliasing errors from
the velocities; the velocity fields are then transformed back into physical space. Restart
files were written out on the 3/2 grid; these files were Fourier transformed, the top 1/3
modes were truncated (they are zero, anyway), inverse Fourier transformed and then
written to file. For reading into the simulation, the velocity restart files were spectrally
- expanded onto the 3/2 grid.

Computation of the frequency spectra entails obtaining long time series of pressure
data. The LES was run on a SGI Origin 200 (R10000 at 188 MHz). The CFL number
was set to 0.14324 which corresponds to a time step AtU,/é = 0.025. This resulted
in maximum Courant numbers of approximately 0.30, well below the stability limit of
0.50.

The LES8 database consists of 51 files with 64 realizations per file for a total of 3264
realizations spanning a time of 3266/U, (9.860/u,). For each realization, 10 partial
pressures were saved: four fields each of TT and MS pressure corresponding to the four
regions and the TT and MS pressures from all regions.

*In the Galerkin method the nonlinear terms are computed in wavespace rather than in physical
space. This method is considered more accurate, but is much more computationally intensive.



The LES9 database consists of 20 files with 64 realizations per file for a total of 1280
realizations spanning a time of 1286/U, (9.864/u,). For each realization, 11 partial
pressures were saved: four fields each of TT and MS pressure corresponding to the
four regions, the TT and MS pressures from all regions and the total pressure from all
regions.

Computation of partial pressures

Table 1. Regions of the channel.

| Region | Limits Description

1 0 <y* <5 | Viscous shear-layer
2 5<yt <30 Buffer layer

3 30 < y* < 180 | Logarithmic region
4 180 < y* <360 | Upper channel

Since the wall-pressure depends on sources distributed throughout the entire flow
domain it is difficult to ascertain where in the boundary layer the dominant sources
are located. One advantage of turbulence simulations is that they generate three-
dimensional velocity fields from which all the source terms can be computed. In this
investigation the product of the sources by the Green’s function, which is the true
measure of the influence of the sources on the wall-pressure, has been computed. The
channel was divided into four regions (Table 1) roughly corresponding to the viscous
shear layer, buffer and logarithmic regions, and the upper part of the channel. The
contribution of the source terms was integrated over each region. It is assumed that the
partial pressures are evaluated at the lower channel wall, even though symmetry has
been used in the data reduction and partial pressures have been averaged over both the
upper and lower channel walls. The lower wall will be referred to as the “near-wall,”
the upper wall, the “far-wall.”

The pressure source terms (7};) were computed in physical space on the 3/2 grid.
Nine terms were computed: the six TT terms, their sum, the MS term and the to-
tal. They were then Fourier-transformed to yield their complex coefficients in planar
wavenumber space, TZ,(K,y) The integral of the product of the source terms and
Green’s function

R n2(r)
Py (K, Rr) = /n o T;(K, n)G(K,y = —1,m)dn. (6)
1(r
(where 71(r) and 73(r) are the lower and upper integration limits for each region, and r
denotes the vertical regions described in Table 1) was then computed using Chebychev
integration. The complex partial pressure spectrum due to the source term T;; from




region r is denoted by p(K, Rr). The complex spectra for the various terms and regions
could then be combined; e.g., the partial pressure due to 712 from regions 2, 3 and 4 is

Pl (K, R234) = p1; (K, R2) + 1y (K, R3) + by (K, R4). (7)

The total TT partial pressure is the summation of all the TT partial pressures,

3
P T(K,Rr) = ZZﬁgT (K, Rr), (8)

i=1 j=1
and the total partial pressure is
P(K, Rr) = p"*(K, Rr) +p"" (K, Rr). (9)

The total pressure is p**(K, R1234).
The magnitudes of the complex spectra were computed by

(K, Rr) = pj;(K, Rr)p;;(K, Rr)  (no summation) (10)

(where f* is the complex conjugate of f), and averaged over multiple realizations. It
should be noted that the partial pressures are defined by the integral over all frequencies,

(K, Rr) = /_ * (K, w, Rr)dw (11)

where II(K, w, Rr) is the partial pressure in four-space. The one-dimensional spectra
were obtained by the integrations

n(ks, R) = /_ “ (K, Rr)dk, (12)

and

n(k,, Rr) = / (K, Rr)dk, (13)
The one-dimensional spectra were normalized by 724.

Computation of partial pressure spectra

The wavevector-frequency spectra shown in this Section were computed by the fol-
lowing methodology: the data were divided into N; = 384 point segments spanning
the period, T, with 50 percent overlap. This gave a reasonable compromise between
number of spectra realizations and frequency resolution (the frequency resolution is
approximately 4u,/d and the 0.15/u, sampling rate gives a maximum frequency of ap-
proximately 760u,/6). A Hanning window was used on the time segments, while no
windowing was necessary in the z and z directions in which the flow is periodic. The
Hanning window was applied in time to the total, resolved pressure, p, normalized by
the long time average value of 7,

1 27l
P (@i, 25, t) = p(xs,25,t) = | 1 — cos il (14)
2 N,

6



where ¢ = 1...N,, j = 1...N,, and | = 1...N;. A three-dimensional Fourier
wavenumber-frequency transform of each time segment was taken and from that, an
averaged spectral density was obtained from the mean of the spectral densities from
the m overlapping segments

U (ks A, 1A0) = 3" (7),. (15)

Here p denote the Fourier coefficients of the pressure and p* are their complex conju-

gates. The three-dimensional spectral density should satisfy Parseval’s theorem which
states that the “mean square value of a periodic function is equal to the sum of squares
of all it Fourier coefficients,5”

Ny N, Nz N¢ N; N,

N NNtZZZp @ zpt) =35 3. U (iAk,, jAk,, [Aw) (16)

I=1j=11i=1 =1 j=11i=1

where the left hand side is the mean-square (MS) pressure. Since the pressure has been
windowed in time, its spectral density does not satisfy (16) exactly; ¥ is then normalized
to satisfy (16). The two-dimensional k, — w spectra is given by the summation over all
the spanwise wavenumber modes,

B(ilky, IAw) = %j . (17)

j=1

The two-dimensional spectral density extends over | = 1...N; frequency bins and
i =1... N, wavenumber bins and has the symmetry property

O(iAk,, IAW) = O [(N, — i + 2)Akyg, (N; — 1+ 2) Aw) (18)

In the k, —w plots the wavenumber bins N,/2+2 < i < N, have been translated to the
bins —N,/2 +1 < i < —1; with this convention, a wave that is convecting downstream
will have either w or k, negative. In the two-dimensional spectra plots, the convective
ridge, representing energy convecting downstream, is shown in the negative k., positive
w quadrant. Constant frequency cuts of streamwise wavenumber spectra, extracted
from this two-dimensional spectra, show just the negative k., i.e., where the convective
ridge lies.

The one-dimensional point frequency spectra is obtained from the double summation

H1Aw) = 355U (iAky, Ak, 1), (19)

j=1i=1
and the one-dimensional wavenumber spectra are given by

Nz Nt

$(iAky) =3 S U (iAk,, jAk,, 1AW), (20)

j=11=1




and
N N

P(FAk,) =D U (iAk,, jAk,, IAw). _ (21)
i=11=1
These are functions which are symmetric about their folding frequency (or wavenum-
ber); they have been converted to one-sided spectra by multiplying all components,
except the zero frequency (or wavenumber) component, by a factor of 2, thus preserv-
ing Parseval’s identity.
Note that two normalizations have been used in our previous works:

1. The wall-pressure spectra shown in Chang et al.” and Chang? are derived from
three-dimensional k, — k, — w spectra. In these works, three-dimensional spectra
was normalized using a Parseval’s equation in which the integral of the spectra
equalled the m.s. of the input signal. The various summations e.g., (19)-(21)
were normalized such that their integrals are equal to the m.s.. The rationale
for this approach was for dimensional consistency: it is assumed that the three-
dimensional spectra has the units of p?L?T'; integrating over k, (summing all k,
components and multiplying by Ak,) gives the units p? LT}; subsequent integration
over k, to obtain the point frequency spectrum gives the units p?T" which is
typically found in the literature (see e.g., Keith et al.®).

2. The second normalization, used in the present work, as well as for the partial
pressure spectra in Chang? is based on the principle that the summation of the
spectra equals the m.s.. In this case there is no explicit way to change the units
when performing the various integrations. It will be assumed that the units of the
k, — k, —w spectra are p?L*T'; the k, — k, spectra p?L?; k, —w and k, —w spectra
p*LT; one-dimensional k, and k, spectra p?L; and one-dimensional w spectra p*T'.

To convert from the first to second normalization, simply multiply the streamwise
wavenumber spectra by Ak,, the spanwise wavenumber spectra by Ak, and the fre-
quency spectra by Aw.

PRESENTATION OF RESULTS

Mean velocity and turbulence intensity profiles

In this subsection we show the statistics of the partial pressures. The mean ve-
locity profiles are shown in Figure 1. Comparison to DNS results show that they are
well-resolved and have the expected behavior in the various regions of the channel.
Turbulence intensity profiles are shown in Figure 2.

Mean square variation of pressure with time

Figure 3 shows the variation of the T'T, MS and total pressures due to sources
over the entire channel[R(1234)]. The m.s. pressures have been normalized by (pu24)?,
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while time has been normalized by §/U,. It shows clearly that the MS pressure is almost
always greater than the T'T pressure and that the largest variations in the total pressure
are highly correlated with those variations in the MS pressure. By contrast, the TT
pressure has a much smaller variation than either the MS or total pressure (even though
it can be seen that the T'T variation are correlated with the MS and total pressure).
This result is an indication that, at least in a broad-band sense, and over the entire
domain, high amplitude events are more closely associated with the MS pressure than
the TT pressure. This is consistent with the findings of Johansson et al.1°.

Point frequency spectra

The objective of this subsection is to show that the LES8 compares very well with
previous simulations and recent experiments.

Figure 4 compares the point frequency spectra for LES8, DNS5, and the TBL sim-
ulation of Singer!!. Also shown are two recent experimental results by Farabee and
Casarellal? and Gravante et al.!® with Re, values similar to that of Singer. The impor-
tant parameters for the point frequency spectra are listed in Table 2. Figure 4(a), the
spectra normalized by outer variables, shows that for the low frequencies, the LES and
DNS spectra are identical. For wé/u, > 100 the LES and DNS spectra diverge rapidly,
due to the simulations respective wavenumber resolutions — the point frequency spec-
tra is the integration over all wavenumbers, and it can be seen in Figure 4, that as
the frequency increases, the amount of energy truncated by the wavenumber cutoff in-
creases. In fact, at about wd/u, = 140, only about one-half the convective ridge is
resolved and the difference between the LES and DNS is about 3 dB.
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The simulation of Singer has lower energy than LES8 and DNS5 in the lower fre-
quencies, but is virtually identical with that of Gravante et al.!3. The data of Farabee
and Casarella!? is slightly lower. This variation in the low frequencies is consistent with
the trends shown in Keith et al.,®, who compared point frequency spectra over a wide
range of Re. Farabee and Casarella'?, on the other hand, showed that with a two-fold
variation in Re, this frequency range, that includes the peak of the spectra, should
collapse to a single curve.

It is apparent that the higher Re spectra has a much larger spectra peak region than
does the lower Re LES8 and DNS5 data. This is consistent with the notion that higher
Re flows have more energy in the scales small compared with §. The overlap range, as
proposed by Bradshaw!* should have a w™! decay rate. The spectra of Gravante et al.!3
is the only one that exhibits an extended frequency range with such behavior. The TCF
data has no such region, since low Re flows have essentially no wavenumber separation
between the larger, energy producing scales and the smaller energy dissipating scales.
The data of Singer may have a small frequency range that has a w™! decay rate; however,
it too, is attenuated rapidly by the simulation’s wavenumber resolution. The data of
Farabee and Casarella'? has an approximate w~'/2 decay rate, but no w™! region.

The inner-scaled spectra, Figure 4(b), shows that inner scaling does a fairly good
job of collapsing all of the spectra, with differences explainable by wavenumber reso-
lution arguments (values of w}, the frequencies where one-half of the convective ridge
is resolved, are listed in Table 2). In the range w* < 1 (wt = wé* /u,) the TCF data

10
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and Gravante et al.!® are identical. Both the DNS and Gravante et al.!* have a range
with a w™® decay rate; the DNS data diverges at about w* > 2 due to wavenumber
resolution, whereas the data of Gravante et al.%, has a w™ behavior out to its largest
frequency; this is because it has w} = 5. As expected, the spectra of Singer decays
most rapidly due to wavenumber resolution: due to the coarse grid (d* = 100) Singer’s
data has w} = 0.4; the LES8 data has w} = 0.8. The data of Farabee and Casarella'
is slightly lower than the data of Gravante et al.'® and has a frequency range with a
constant decay rate slightly larger than w=>. The reason for the faster decay rate is
that it has w} > 0.8. Above w} > 0.8 the spectra of Farabee and Casarella'? does not
decay as fast as the simulations.

11




Table 2. Wall pressure frequency spectra parameters. Re, = U,0/v, where
U, is the channel centerline velocity for channel flow and free
stream velocity for boundary layer flows.

| Source [ Re, l Re, | dt | wt I
LES8 3200 | 171 | 44|08
DNS5 3200 180 18 2.1
Singer 25,500 | 1000 | 100 | 0.4
Farabee and Casarella'? | 39,000 | 1535 | 44 | 0.8
Gravante et al.!3 40,000 | 1504 8| 5

12
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k, — w spectra— R1234

In this subsection we show the two-dimensional k, —w spectra for the total pressure
from all regions and compare it to that from the literature and previous simulations.
Figure 5 shows the two-dimensional spectra from LES8, LES9 and from Choi and Moin.®
(reduced by Bruce Abraham and shown in Chang, Abraham and Piomelli"). The CM
data have not been adjusted for the change in normalization and only the wavenumber-
frequency range corresponding to LESS8 is shown. The character of the subconvective
range is quite different: the data of CM has much higher energy, basically flattening
out, as has been noted previously. The LES8 data falls off rapidly with decreasing |k,|
with the energy build-up in the the smallest |k,| modes; the LES9 data is flat in the
smallest |k,| modes.

Figure 6 are constant-w cuts comparing LES8, LES9 and CM. The CM data has
a convective ridge that is both higher and wider than the LES; this is consistent with
previous findings. What is notable is that in the subconvective range the CM data
tends toward a k? behavior as w increases, whereas the LES8 and LES9 data has an
increasingly large rolloff in this range. The LES9 data is quite different than the LES8
data in the lowest |k;| modes: it is flat, not having the energy build-up as in LESS.

Partial MS and TT pressures — R1234

Figure 7 shows the one-dimensional spectra of total, MS and TT pressures due
to sources over the entire channel. The streamwise and spanwise spectra are similar
to the DNS data shown in Chang, Piomelli and Blake!. The plots show that the
low wavenumbers and frequencies are dominated by the MS pressure; in the spanwise
wavenumber and frequency mid-range both TT and MS contribute significantly to the
total pressure; at high spanwise wavenumbers the T'T pressure becomes dominant (see
e.g., the spanwise spectra, Figure 7(b)).

Plots of the two-dimensional k, —w spectra of the total, MS and TT partial pressures
due to sources from the entire channel (R1234) for LES8 and LES9 are shown in Figures
8 and 9, respectively. Figure 8(a) shows that the total pressure has an energy buildup in
the lowest wavenumbers. Comparison with Figures 8(b) and (c) shows that this buildup
must come from the T'T pressure; the MS pressure falls off rapidly in the lowest |k;|
bins. Both the TT and total pressure for LES9, Figure 9, have smooth contours with
no buildup in the lowest |k;| bins. The MS pressure for LES9 is identical to that shown
for LESS8 in Figure 8(b).

Greater insights into the nature of the subconvective wavenumber range can be
obtained from constant frequency plots of streamwise wavenumber spectra, Figure 10
(LES8) and Figure 11 (LES9). It is obvious that the TT pressure is the source of
the subconvective pressure as the MS pressure goes to zero as k, — 0. At the lower
frequencies, Figure 10(a) and Figure 11(a), the subconvective range is flat; as frequency
increases [Figures 10(b)-(d) (LES8) and Figures 11(b)-(d) (LES9)], the energy increases
as k; — 0. At the lower frequencies the MS and TT contributions at the convective
ridge are about equal. As frequency increases, the MS becomes the dominant pressure
at the convective ridge. Though the wavenumber resolution limits our ability to make a

15




conclusive statement, it appears that the high wavenumber side of the convective ridge
'is dominated by the MS pressure.
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Partial pressures from regions of channel

In this subsection we look at the partial pressures from four regions of the channel.

One-dimensional spectra of partial pressures

Figure 12 shows the one-dimensional MS pressure spectra for all regions of the
channel and for each of the individual regions. The streamwise and spanwise spectra
are similar to the DNS5 data shown in Chang, Piomelli and Blake!. The frequency
spectra have previously not been shown. The figures show that the the buffer layer
dominates the entire wavenumber and frequency ranges; the logarithmic region is the
next most dominant; the viscous shear layer is small at low k, — w, increasing with
k, — w; all regions except the viscous shear layer are important at low k, — w.

The one-dimensional TT pressure spectra for all regions of the channel and for
each of the individual regions from LES8 are shown in Figure 13. The plots for LES9
are virtually identical and have not been included. It shows the familiar low k, — w
energy buildup shown in Chang, Piomelli and Blake!. The low-frequency energy buildup
indicates that the partial pressures have high-energy slowly-varying components. These
have been observed in animations of the T'T partial pressures.

Two-dimensional k, — w spectra of partial pressures

Figures 14 and 15 show the MS spectra for sources from each of the regions, re-
spectively. It is apparent that with increasing distance from the wall, the slope of the
convective ridge in k, — w space (w/(k.0) increases; the width of the convective ridge
decreases; the shape of the convective ridge becomes increasing asymmetric; the energy
in the higher wavenumbers and frequencies becomes attenuated, becoming increasingly
concentrated in low k, — w. The TT k, — w spectra from the four regions are shown
in Figures 16 and 17 for LES8 and Figures 18 and 19 for LES9. The figures show that
both LES8 and LES9 have similar energy build-ups in the low-wavenumbers. However,
as shown previously, when the pressures from all the regions are added together LES8
and LES9 are quite different: Figure 8(a) and (c) shows that for LES8 the TT partial
pressure (and total, too) from all regions retains the low-|k;| energy buildup. On the
other hand, Figure 9(a) and (b) show that adding the contributions from all regions
results in the low-|k,| energy buildup disappearing. '

Convection velocities

As noted above, the convection velocities cbmputed from the peak of the convective
ridge can characterize the k, — w behavior of the peak. These were computed from

Uu(ks) = “’P%Ek) (22)

and are shown in Figure 20 for the MS and TT partial pressures from each of the
regions. U, increases with distance from the wall, from about 10u, due to viscous
shear layer sources to about 15u, due to the logarithmic region and 18u, due to the
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(1]

upper channel. The convection velocities from the MS and TT partial pressures for
all the regions shows that for the MS partial pressures, the low wavenumbers have the
same value as the logarithmic region, but approach the buffer layer curve at the higher
wavenumbers. The peak value of U, appears to be 15.3u, at k.0 = 3, decreasing to
about 11u, at the highest wavenumbers.
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Constant—w cuts of k, — w spectra of partial pressures

Constant frequency cuts of the k, — w spectra for the MS pressures from all the
regions compared with that for the individual regions are shown in Figure 21. At the
lowest frequency, Figure 21(a), the low-k, side of the convective ridge seems to be
due to the logarithmic region; the peak due to both the buffer layer and logarithmic
region; the high-k, side due to the buffer layer. As frequency increases, Figure 21(b-
d), the importance of the logarithmic region diminishes and the buffer layer appears
to be primarily responsible for the convective ridge energy. In the two lowest-w cases
[Figure 21(a-b)] the subconvective range has an approximate k2 behavior. As frequency
increases, the subconvective range goes to k2.

Constant frequency cuts of the k, — w spectra for the TT pressures from LES8 from
all the regions compared with that for the individual regions are shown in Figure 22.
Results from LES were almost identical, so are not shown. Similar to the broad-band
partial pressures, in the low-k, the constant-w cuts from the individual regions have
higher energy than that due to all the regions (R1234). For all the frequencies the
lowest-k, partial pressures from the buffer layer and logarithmic region are essentially
equal, diverging as k, approaches the convective ridge. This is not surprising, in light of
the fact that the one-dimensional broad-band wavenumber spectra for the buffer layer
and logarithmic region are very close in the the lowest-k, (Figure 13). With regards to
the partial pressures from the buffer layer and logarithmic region, as frequency increases,
the relative level of the pressure in the lowest k, decreases with respect to that at the
convective ridge; this points out that the low-k, energy build-up, though evident at all
frequencies is mostly concentrated at low-w. A feature of the partial pressures from all
the regions is that as frequency increases, the minimum between the subconvective and
convective ridge peaks becomes more pronounced and move to higher k,.

In the low-w [Figure 22(a)], the low-k, side and peak of the convective ridge mimics
the behavior of the logarithmic region, while the high-k, side mimics the pressure from
the buffer layer. Note that for part of the high-k, side of the convective ridge the partial
pressure from the buffer layer is actually higher than that from all regions. As frequency
increases, the convective ridge partial pressure due to the logarithmic region decreases
with respect to that from the buffer layer; thus the buffer layer partial pressure is the
dominant source of convective ridge energy there.
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Comparison to semi-empirical formulations

The incompressible model for the wall-pressure spectra of Chase!® is given by

_ prus 2 [ K3+ (b0)~2 2}
069 = i s oy {CTK EE CHREE %)

_ (w-— U.k,)?
a (h’u,—)2

There are four constants that need to be determined: Cr and Cjy, which determine the
amplitude of the TT and MS pressures, respectively, b and h. The convection velocity,
U, determines at which value of k, the convective ridge appears. It has been assumed
that the pressure source layer is of thickness b, where 4 is the boundary layer thickness.
(24) takes into account the assumed decorrelation of the velocity-field sources as they
convect downstream at U,; hu, is a characteristic turbulence velocity. The parameter
h controls, to some extent, the width of the convective ridge. Chase!® recommended
that the values h = 3, Crh = 0.014, Cprh = 0.466 and b = 0.75 be used.

Figure 23 compares ‘the spectrum of Chase!® to the total, TT, and MS spectra
from LES9 at wd/u, = 156. The spectra (23) has been integrated over all k£, to be
consistent with the LES9 results. The results of Chase are shown with parameters
which lead to a best fit of the subconvective range and convective ridge— h = 1,
Crh =8 x107% Cph =5 x 1072 and b = 1. The model has the correct wavenumber-
white [i.e.,¢(k;) ~ k%] behavior in the subconvective range, and, as can be seen in (23)
the MS component has a k2 behavior in this range as shown e.g.,in Figure 22. The
model does not correctly predict the width of the convective ridge— this could be due
to fact that it considers only the velocity-field sources in the logarithmic region. As
shown in Figure 22 the MS pressure from the logarithmic region is indeed, very narrow-
peaked, and the full width of the convective ridge comes from sources in the buffer
layer. The rolloff between the convective ridge and subconvective range is determined
primarily by the values of Cjyy and Cr, and, as constants, they cannot reflect the fact
that the rolloff varies with w as shown in Figure 22.

+ K? (24)

CONCLUSIONS

It was found that the form of the nonlinear terms makes a difference in the TT
pressure for the entire channel in the subconvective wavenumber range. With the
rotational form (LES8), the subconvective pressures have high energy build-up in the
lowest wavenumbers, whereas with the skew-symmetric form (LES9), there is no such
behavior. When the subconvective pressures are decomposed into those from the four
regions of the channel, the effect of advective scheme is not apparent: the form of the
nonlinear terms only affects the pressure over the entire channel.

It was shown that the T'T pressure is exclusively responsible for the subconvective
pressure and that both the buffer layer and logarithmic region are the main contributors.
The MS pressure behaves as k2, thus going to zero as k, — 0.
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Figure 23. Constant frequency cuts of k, — w spectra at wd/u, = 156 com-
pared with Chase!®; === : Chase; R 70171 F—— : MS;
A TT.

With regards to the pressures at the convective ridge, the one-dimensional broad-
band spectra shows that the MS pressure is dominant in the low- to medium-wavenumbers
and frequencies, but in the higher wavenumbers the T'T' pressure becomes dominant.
Constant frequency slices of the two-dimensional k, —w spectra shows that in the lower
frequencies both the logarithmic region and buffer layer are responsible for the MS con-
vective pressures, but as frequency increase, the buffer layer becomes more dominant.
The same is true for the T'T pressure.

Spectra predicted with the semi-empirical model of Chase!® was compared with LES
results. It is apparent that such models can be tuned to have the correct behavior in
the subconvective range and height of the convective ridge. However, possibly due to
lack of inclusion of buffer layer sources, the width of the convective ridge is underpre-
dicted. Also, such a model cannot describe the frequency-dependent rolloff between the
convective ridge and subconvective wavenumber range. Parameterization of the buffer
layer sources is necessary for a fully-successful wall-pressure model.
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